Breast Ultrasound Imaging Technique Sonographic Breast Anatomy

Grateful appreciation to Richard A. Lopchinsky, MD, FACS and Nancy H. Van Name, RDMS, RTR, and Marlene Kattaron, RDMS

©2000 UIC All Rights Reserved.

Technique: Examiner Position

- Physical comfort
 - Personal preference
- Initial examination
 - Machine to patient's right
 - Image with right hand
 - Operate machine with left hand
- Interventional examination
 - Position machine on opposite side of patient to be examined

- Maximize tissue thinness
- Reduce reflective and refractive attenuation
- Maintain ultrasound transducer parallel to breast surface
- Maintain ultrasound beam perpendicular to breast tissue

- MEDIAL LESIONS
 - patient is supine
 - ipsilateral armed is place over the patient's head

- LATERAL LESIONS
 - patient is opposite
 posterior oblique
 - ipsilateral arm is placed over the patient's head

- SUPERIOR LESIONS
 - patient is SITTING
 - ipsilateral arm is placed over the patient's head

- Coupling Gel
 - liberal quantity
 - use gel warmer
- Apply gentle uniform pressure with the ultrasound transducer
- Increase transducer pressure for:
 - greater penetration
 - scanning the subareolar region

Lesion Location

allows for reproducibility for follow imaging

 allows for reproducibility for interventional breast procedures

Localization is by the clock face.

Localization is by the clock face.

Technique: Equipment Selection

- Transducer
 - 7.5 MHz linear array or higher
- Power
 - 50 70%
- Gain/TGC
 - 50 70% Gain
 - TGC is midrange with no curve
- Focal Zones
 - minimum of three zones
- FOV/Depth/Zoom
 - Imaging depth adequate enough to visualize ribs and pleural membrane

Technique: Equipment Selection

- Gray scale
 - long scale, low contrast, high dynamic range
- Persistence
 - medium setting for most dynamic image and ease in scanning
- Edge effect
 - highest setting for best resolution
- Compression
 - low to medium setting to reduce noise but maintain the lowest usable echo

* Mammary fat should be a medium gray from the overlying fascia to the retromammary space

Focal Zones

 Image of a solid mass with the focal zone placed incorrectly

The focal zone depicted by the caret is at the bottom of the image.

Focal Zones

• Image of the same solid mass with the focal zone placed <u>correctly</u>

The focal zone depicted by the caret is at the top of the image near the lesion.

Focal Zones with Stand-off Pad

 For superficial lesions, the stand-off pad allows placement of the focal zone in the subcutaneous region

A sebaceous cyst.

Focal Zones with Stand-off Pad

• Superficial mass

Sonographic Breast Anatomy

Skin Subcutaneous fat **Cooper's Ligaments** Breast parenchyma Retromammary fat Pectoralis muscle Ribs Pleura Nipple

Skin

- Highly reflective band along the surface of the breast
- Normal thickness 2– 3mm
- Bright linear echo at top of image

Subcutaneous Fat

- Lies between the skin and the breast parenchyma
- Quantity of fat varies
- Homogeneous

Cooper's Ligaments

- "Tent-like" structures
- Arise from breast parenchyma
- Echogenic

Parenchyma

- Lies beneath the subcutaneous fat
- Mixed homogeneity
- Four patterns:
 - fibrous
 - premenstrual
 - postmenstrual
 - pregnant

Retromammary Fat

- Posterior to parenchyma
- Forms a layer between the deep fascia plane and the pectoralis muscle

Pectoralis Muscle

- Anterior to ribs
- Sonographically imaged in the direction of their fibers

Ribs

 Easily identified bone attenuates causing an acoustic shadow

Pleura

- Linear echogenic line deep to rib
- Will move with respiration

Nipple

 Consists of both dense connective tissue and connective tissue of the duct which can cause posterior acoustic shadowing

Lymph Node

- Solid nodule
- Ovoid
- Echogenic fatty hilum

Duct

- Tubular branching structures
- Converge sub-areolar

Breast Ultrasound and Mammographic Correlation

Images courtesy of Emily Conant, MD

Breast Ultrasound and Mammographic Correlation

Images courtesy of Emily Conant, MD

Ultrasound of the Breast Indications

- Radiologic
 - Mammographic mass
 - Assymmetric density on mammo
- Physical
 - Mass
 - Thickening
 - Discharge or Infection
- Sono

– Screening in dense breast / high risk

Ultrasound of the Breast

Recent studies show if strict criteria for lesion analysis are followed, specificity of ultrasound in determining benign or malignant reaches 70%.

Reference: Stavros AT, Solid Breast Nodules: Use of Sonography to Distinguish between Benign and Malignant Lesions. Radiology 1990

Breast Ultrasound

Imaging Characteristics size shape border definition internal echogenicity posterior enhancement architectural changes

- Margins
- Retrotumoral acoustic phenomena
- Internal echo pattern
- Echogenicity
- Compression effect on SHAPE
- Compression effect on INTERNAL ECHOES

Margins

Malignant
– indistinct, jagged

- Benign
 - distinct but smooth
 - sharp, jagged
 - sharp, smooth

Retrotumoral Phenomena

- Malignant
 - posterior shadowing
 - unilateral edge shadowing

- Benign
 - posterior enhancement
 - bilateral edge shadowing

Internal Echo Pattern

- Malignant
 - heterogeneous

Benign
 homogenous

Echogenicity

- Malignant
 - hypoechoic to fat

- Benign
 - hypoechoic
 - hyperechoic
 - isoechoic
 - anechoic

Compression Effect on shape

- Malignant
 - no change

- Benign
 - shape distortion

Compression Effect *internal echoes*

Malignant
– no change

- Benign
 - echoes become more homogeneous

Compressibility:

Complex cyst

- Change in size by more than 25% is likely to be benign
- Frequently lipoma or cyst

Breast Ultrasound

- Malignant Masses
 - variable walls
 - variable shapes
 - irregular borders
 - ill-defined borders
 - non-uniform
 - low-level distribution of echoes

- Benign Masses
 - round shape
 - oval shape
 - smooth, defined
 borders
 - uniform
 - low to medium distribution of echoes

Benign Breast Cyst

- Simple Cysts
 - anechoic
 - smooth, thin margins
 - posterior acoustic enhancement

Common exceptions:

- hypoechoic (proteinaceous, calcium or blood)
- septations
- lack of posterior enhancement (lesion is deep or against chest wall)

T BREAST 2- TRV CM FR NIP 2.2-1 3.2-4.2-5.2-

Images courtesy of Emily Conant, MD

Shape: Round

• Very round lesions are usually cysts despite some echos

Complex Lesions

- Not completely anechoic
- Well circumscribed
- Thinly encapsulated
- Enhanced through transmission

Lesion Analysis Solid Masses

Benign Characteristics

- Ellipsoid shape
- Thin definable capsule
- Two or three lobulations
- Hyperechogenicity
- Absence of Malignant characteristics

Reference: Stavros AT et al. Solid Breast Nodules Use of Sonography to Distinguish between Benign and Malignant Lesions.

Solid Lesions - Benign

- Round or oval shape
- Smooth defined borders
- Uniformly low/medium level internal echoes
- Minimal attenuation *if any*
- Multiple lobulations

Solid Mass - Malignant

- Irregular shape
- Irregular/ill-defined borders
- Almost anechoic
- Angular margin
- Taller than wide

Solid Mass - Malignant

- Irregular shape
- Irregular/ill-defined borders
- Almost anechoic
- Thick echogenic rim
- Posterior shadowing

Figure 29

Solid Mass - Malignant

• Ductal extension

• Spiculations

Benign vs. Malignant

Figure 31

Malignant vs. Benign

TO BE DEFINITELY BENIGN

- Absence of any malignant characteristics

 spiculation, taller-than-wide, angular margins, shadowing, branching pattern, calcifications
- One of the following
 - hyperechoic
 - thin, echogenic capsule + ellipsoid shape
 - thin, echogenic capsule + 3 or less lobulations

Palpable Thickening: Localized Dense Breast Tissue

- Differentiate between dense tissue and a real abnormality
- Can obviate the need for open biopsy

Evaluation of Firm thickening

- Hyperechoic areas are benign
- an additional piece of evidence for benign dx
- FNA was performed on palpable thickening to confirm dx

Evaluation of Firm Thickening Fatty breast tissue

- Relatively easy to see any abnormality unless mass is isoechoic with the fat
- (Ligaments may cause shadows suggesting cancerous lesions)

Unusual Findings: Scar

 Scar tissue causes marked shadowing mimicking cancer

Unusual Finding: Enlarging Lymph Node

 H/O ca Rt, LUOQ "lymph node" increased from 7-> 9 mm over 2 years. FNA performed

Unusual Finding: Fat Necrosis New mass after TRAM flap

 42yo developed new mass in skin flap above TRAM 9 months after surgery

Unusual Finding: Fat Necrosis Postreduction

• 24yo post reduction mammoplasty

Unusual Finding: Abscess

• 22yo infection: r/o abscess

Unusual Finding: Axillary Seroma

- S/P Right Lumpectomy + Sent Node + RT
- Mass in axilla 4 wk after finishing RT

Unusual Finding: Axillary Seroma

• Best way to resolve issue

